硅烷偶联剂在新材料中的应用研究

硅烷偶联剂的应用面极广,可以处理有机材料,也可以处理无机材料。通过硅烷偶联剂的处理后材料的某些性能会得到显著提高。以下介绍几种硅烷偶联剂的在新材料中的具体应用研究。

西安交大重点研究了硅烷偶联剂对太阳电池铝浆性能的影响及分析,他们重点研究了添加不同质量分数w(硅烷偶联剂)(0.5%-3.0%)对铝浆有机载体的表面张力、铝膜表面划痕、起灰、导电性能的影响规律。结果表明:当w(硅烷偶联剂)为2.5%时,有机载体的表面张力可从约30 mN/m 降低至25.69 mN/m,提高了铝粉颗粒之间以及铝膜与硅片之间的黏附作用,从而减少划痕和灰化,进而可使铝电极的接触电阻由0.60 Ω 降低至0.19 Ω。

而又有学者将目光对准了玻璃的发光性能,而这种玻璃是硅烷偶联剂改性的芪3 掺杂铅氟磷酸盐的玻璃,具体的操作是:采用溶有芪3 的硅烷偶联剂KBM403SnF2粉末进行改性, 经改性的SnF2 粉末有利于提高有机染料芪3 掺杂的分散性。将含有芪3的改性SnF2粉末掺入低熔点铅锡氟磷酸盐玻璃,获得了芪3掺杂的有机/无机杂化玻璃。这种玻璃有更好的投射性和均匀性。 

硅烷偶联剂在纳米级材料及复合材料中应用研究:

复合材料由于其优异的性能,越来越受到大家的青睐。但是复合材料的固有缺点不能消除。通过利用硅烷偶联剂的加入可以制备性能更佳的复合材料。纳米材料中加入偶联剂后就像增强体一样,可以显著提高材料性能。

用硅酸钠制备纳米SiO2乳液,用氯化铵控制粒径大小,然后与天然胶乳共混共沉制备出SiO2/NR复合材料。采用SEM SiO2/ NR 复合材料断面进行分析, 观察SiO2 粒子大小和形态, 并对其力学性能进行测试。结果表明, 经过硅烷偶联剂处理的纳米SiO2 在复合材料中分散均匀,力学性能较好。[3]除了无机复合材料,在纳米氧化锌制备中也加入了硅烷偶联剂,采用的硅烷偶联剂有KH550KH 560KH 570对纳米ZnO进行了改性, 研究表明硅烷偶联剂KH570改性效果较好。红外光谱、热重分析研究表明改性后纳米ZnO 粉体表面包覆了KH 570; 通过XRD衍射,TEM分析可知改性后纳米ZnO 粉体的晶型没有发生明显改变但分散性变好。

除了制备纳米级的材料的研究,在复合材料中也有应用,如偶联剂在复合水泥砂浆中应用研究,他们采取了统一变量法,研究了硅烷偶联剂对普通水泥砂浆、聚合物改性水泥砂浆、掺钢纤维水泥砂浆和掺钢纤维聚合物改性水泥砂浆性能的影响,研究结果表明,0.5%-1%硅烷偶联剂的水溶液能较大幅度地提高多种复合水泥砂浆的抗折强度和抗拉强度,且能提高普通水泥砂浆和聚合物改性水泥砂浆的稠度,但会使其分层度略有增大.[5]又如在废EMC/PVC复合材料,具体制备是:采用硅烷偶联剂KH-550对废环氧模塑料粉(EMC)进行表面改性并制备了相应的改性废EMC/PVC复合材料,对材料的力学性能测试,表明了拉伸强度、冲击强度和弯曲强度分别比未改性时提高了很多,而且也大大改善了废EMC 粉和PVC之间的相容性, 提高了界面结合强度。[6]对于硅烷偶联剂在膨胀阻燃聚丙烯复合体系中的应用研究表明了:当A-172(乙烯基硅烷偶联剂)/IFR(膨胀阻燃剂)/PP0.5/22.5/77.5时,体系的力学性能基本不变,但阻燃性能得到了改善。其中氧指数同比提高了22.5%,体系的热释放速率峰值和烟释放速率峰值同比分别下降了9.7%98.75%。同样对于沥青路用性能的研究表明:随硅烷偶联剂用量增加, 复合沥青混合料在7d 28d 龄期的路用性能先提高后降低, 当用量为乳化沥青质量分数的0.6%,混合料冻融劈裂强度比、马歇尔稳定度和抗压回弹模量等路用性能提高了10%~ 30%